Invited Review HIGHLIGHTED TOPIC Fatigue Mechanisms Determining Exercise Performance Muscle-derived ROS and thiol regulation in muscle fatigue

نویسندگان

  • Leonardo F. Ferreira
  • Michael B. Reid
چکیده

Ferreira LF, Reid MB. Muscle-derived ROS and thiol regulation in muscle fatigue. J Appl Physiol 104: 853–860, 2008. First published November 15, 2007; doi:10.1152/japplphysiol.00953.2007.—Muscles produce oxidants, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), from a variety of intracellular sources. Oxidants are detectable in muscle at low levels during rest and at higher levels during contractions. RNS depress force production but do not appear to cause fatigue of healthy muscle. In contrast, muscle-derived ROS contribute to fatigue because loss of function can be delayed by ROS-specific antioxidants. Thiol regulation appears to be important in this biology. Fatigue causes oxidation of glutathione, a thiol antioxidant in muscle fibers, and is reversed by thiol-specific reducing agents. N-acetylcysteine (NAC), a drug that supports glutathione synthesis, has been shown to lessen oxidation of cellular constituents and delay muscle fatigue. In humans, NAC pretreatment improves performance of limb and respiratory muscles during fatigue protocols and extends time to task failure during volitional exercise. These findings highlight the importance of ROS and thiol chemistry in fatigue, show the feasibility of thiol-based countermeasures, and identify new directions for mechanistic and translational research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscle-derived ROS and thiol regulation in muscle fatigue.

Muscles produce oxidants, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), from a variety of intracellular sources. Oxidants are detectable in muscle at low levels during rest and at higher levels during contractions. RNS depress force production but do not appear to cause fatigue of healthy muscle. In contrast, muscle-derived ROS contribute to fatigue because loss o...

متن کامل

Invited Review HIGHLIGHTED TOPIC Fatigue Mechanisms Determining Exercise Performance Hyperthermia and fatigue

Nybo L. Hyperthermia and fatigue. J Appl Physiol 104: 871–878, 2008. First published October 25, 2007; doi:10.1152/japplphysiol.00910.2007.—The present review addresses mechanisms of importance for hyperthermia-induced fatigue during short intense activities and prolonged exercise in the heat. Inferior performance during physical activities with intensities that elicit maximal oxygen uptake is ...

متن کامل

Invited Review HIGHLIGHTED TOPIC Fatigue Mechanisms Determining Exercise Performance Exercise-induced respiratory muscle fatigue: implications for performance

Romer LM, Polkey MI. Exercise-induced respiratory muscle fatigue: implications for performance. J Appl Physiol 104: 879–888, 2008. First published December 20, 2007; doi:10.1152/japplphysiol.01157.2007.—It is commonly held that the respiratory system has ample capacity relative to the demand for maximal O2 and CO2 transport in healthy humans exercising near sea level. However, this situation ma...

متن کامل

Invited Review HIGHLIGHTED TOPIC Fatigue Mechanisms Determining Exercise Performance Impaired calcium release during fatigue

Allen DG, Lamb GD, Westerblad H. Impaired calcium release during fatigue. J Appl Physiol 104: 296 –305, 2008. First published October 25, 2007; doi:10.1152/japplphysiol.00908.2007.—Impaired calcium release from the sarcoplasmic reticulum (SR) has been identified as a contributor to fatigue in isolated skeletal muscle fibers. The functional importance of this phenomenon can be quantified by the ...

متن کامل

Invited Review HIGHLIGHTED TOPIC Fatigue Mechanisms Determining Exercise Performance Convective oxygen transport and fatigue

Amann M, Calbet JA. Convective oxygen transport and fatigue. J Appl Physiol 104: 861–870, 2008. First published October 25, 2007; doi:10.1152/japplphysiol.01008.2007.— During exercise, fatigue is defined as a reversible reduction in forceor powergenerating capacity and can be elicited by “central” and/or “peripheral” mechanisms. During skeletal muscle contractions, both aspects of fatigue may d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008